La Adopción del Modelo de Aceptación de Tecnología en el E-commerce con la Inteligencia Artificial como Mediadora
DOI:
https://doi.org/10.5281/zenodo.14511604Palabras clave:
Comercio electrónico, Inteligencia artificial, Facilidad de uso, Utilidad, Modelo de aceptación de tecnologíaResumen
El rápido avance de la tecnología ha cambiado significativamente la forma en que los consumidores enfocan sus hábitos de compra. El volumen mundial del comercio en línea ha experimentado un aumento significativo, en gran parte debido a la pandemia de COVID-19, que ha acelerado el crecimiento del comercio electrónico. Cada vez más, los comerciantes en línea están incorporando tecnología de Inteligencia Artificial de vanguardia en sus plataformas para captar mejor las necesidades de los clientes y enriquecer el viaje de compra. Sin embargo, apenas se ha investigado cómo se adaptan y utilizan los consumidores las tiendas en línea potenciadas por la inteligencia artificial. Este estudio pretende examinar la conexión entre los elementos del Modelo de Aceptación de la Tecnología y el comercio electrónico, con la inteligencia artificial como mediadora en esta relación. Se realizó una encuesta a 352 participantes iraquíes que participan en compras en línea. Para el análisis de los datos se aplicó un modelo de ecuaciones estructurales. Tras establecer el modelo teórico inicial, se formuló y examinó un modelo anidado basado en el TAM. Los resultados mostraron que tanto la facilidad de uso como la utilidad como componentes del TAM influyen positivamente en la probabilidad de adopción de la IA y en su uso continuado entre los compradores en línea. Asimismo, la inteligencia artificial influye positivamente en la adopción del comercio electrónico por parte de los clientes. Por último, la inteligencia artificial desempeña un papel mediador entre el Modelo de Aceptación de la Tecnología y el comercio electrónico. Estos resultados ofrecen información valiosa para los minoristas en línea que buscan mejorar la adopción de la IA por parte de los clientes.
Descargas
Citas
Abu-Taieh, E. M., AlHadid, I., Abu-Tayeh, S., Masa’deh, R. E., Alkhawaldeh, R. S., Khwaldeh, S., & Alrowwad, A. A. (2022). Continued intention to use of M-Banking in Jordan by integrating UTAUT, TPB, TAM and service quality with ML. Journal of Open Innovation: Technology, Market, and Complexity, 8(3), 120.
Ahmad, S. F., Alam, M. M., Rahmat, M. K., Mubarik, M. S., & Hyder, S. I. (2022). Academic and administrative role of artificial intelligence in education. Sustainability, 14(3), 1101.
Ahmeti, F., & Bajrami, H. (2024). Exploring the impact of technology acceptance model constructs on consumer behavior in smes: with a focus on e-marketing strategies. Economic Studies, 33(1). 66-88.
Akıl, S., & Ungan, M. C. (2022). E-commerce logistics service quality: customer satisfaction and loyalty. Journal of Electronic Commerce in Organizations, 20(1), 1-19.
Albeshr, A. M. (2023). A smart chatbot system for digitizing service management to improve business continuity. Master of Science in Information Technology. United Arab Emirates University. https://scholarworks.uaeu.ac.ae/all_theses/1114/. Accessed January 2024.
Al-Maroof, R. S., Alhumaid, K., Alshaafi, A., Akour, I., Bettayeb, A., Alfaisal, R., & Salloum, S. A. (2024). A Comparative Analysis of ChatGPT and Google in Educational Settings: Understanding the Influence of Mediators on Learning Platform Adoption. In Artificial Intelligence in Education: The Power and Dangers of ChatGPT in the Classroom (pp. 365-386). Cham: Springer Nature Switzerland.
Al-Yaqoobi, N. S. S., & Tan, M. I. B. I. (2021). the Technology Acceptance Model Theory and Unified Theory of Acceptance and Use of Technology (Utaut). International E-journal of Advances in Social Sciences, 7(21), 645-653.
Babatunde, S. O., Odejide, O. A., Edunjobi, T. E., & Ogundipe, D. O. (2024). The role of AI in marketing personalization: A theoretical exploration of consumer engagement strategies. International Journal of Management & Entrepreneurship Research, 6(3), 936-949.
Babayev, N., & Israfilzade, K. (2023). Creating complexity matrix for classifying artificial intelligence applications in e-commerce: New perspectives on value creation. Journal of Life Economics, 10(3), 141-156.
Bagdi, H., & Bulsara, H. P. (2023). Understanding the role of perceived enjoyment, self-efficacy and system accessibility: digital natives' online learning intentions. Journal of Applied Research in Higher Education, 15(5). 1618-1631. https://doi.org/10.1108/JARHE-09-2022-0302
Bazoukis, G., Hall, J., Loscalzo, J., Antman, E. M., Fuster, V., & Armoundas, A. A. (2022). The inclusion of augmented intelligence in medicine: a framework for successful implementation. Cell Reports Medicine, 3(1). 100485. https://doi.org/10.1016/j.xcrm.2021.100485
Beheshti, M., ZareRavasan, A., Mahdiraji, H. A., Jafari‐Sadeghi, V., & Sakka, G. (2024). An overview of the consumer‐centric disruptive technology research: Insights from topic modelling and literature review. Journal of Consumer Behavior, 23(2), 372-388.
Chen, D., Esperança, J. P., & Wang, S. (2022). The impact of artificial intelligence on firm performance: an application of the resource-based view to e-commerce firms. Frontiers in Psychology, 13, 884830.
Cheng, X., Bao, Y., Zarifis, A., Gong, W., & Mou, J. (2021). Exploring consumers' response to text-based chatbots in e-commerce: the moderating role of task complexity and chatbot disclosure. Internet Research, 32(2), 496-517.
Cherniak, K. (2024). Chatbot statistics: what businesses need to know about digital assistants. Master.of.code. https://masterofcode.com/blog/chatbot-statistics. Accessed on April 2024.
Dhoni, P. S. (2024). From Data to Decisions: Enhancing Retail with AI and Machine Learning. International Journal of Computing and Engineering, 5(1), 38-51.
Gams, M., & Kolenik, T. (2021). Relations between electronics, artificial intelligence and information society through information society rules. Electronics, 10(4), 514.
Ghazali, E., Mutum, D. S., & Lun, N. K. (2024). Expectations and beyond: The nexus of AI instrumentality and brand credibility in voice assistant retention using extended expectation‐confirmation model. Journal of Consumer Behavior, 23(2), 655-675.
Gupta, C. P., Kumar, V. R., & Khurana, A. (2024, February). Artificial Intelligence Application in E-Commerce: Transforming Customer Service, Personalization and Marketing. In 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 10-16). IEEE.
Hair, J., & Alamer, A. (2022). Partial Least Squares Structural Equation Modeling (PLS-SEM) in second language and education research: Guidelines using an applied example. Research Methods in Applied Linguistics, 1(3), 100027.
Har, L. L., Rashid, U. K., Te Chuan, L., Sen, S. C., & Xia, L. Y. (2022). Revolution of retail industry: from perspective of retail 1.0 to 4.0. Procedia Computer Science, 200, 1615-1625.
Ismail, A., Hidajat, T., Dora, Y. M., Prasatia, F. E., & Pranadani, A. (2023). Leading the Digital Transformation: Evidence from Indonesia. Asadel Publisher.
Jegundo, A. L., Dantas, C., Quintas, J., Dutra, J., Almeida, A. L., Caravau, H., ... & Pacheco Rocha, N. (2020). Perceived usefulness, satisfaction, ease of use and potential of a virtual companion to support the care provision for older adults. Technologies, 8(3), 42.
Josimovski, S., & Dodevski, D. (2023). Advantages of implementing artificial intelligence in e-business for consumers. Knowledge International Journal, 60(1), 69-75.
Kapita, Iraq. (2022). Online shopping: A glimpse of the Iraqi customers shopping behavior. KAPITA. https://kapita.iq/content/issue/online-shopping-glimpse-iraqi-customer-shopping-behavior. Accessed February 2024.
Kaur, M. (2020). Analysing the Relationship of Perceived Ease of Use, Perceived Usefulness and Intention to Use E-Government Services in State of Punjab. International Journal of Computer Applications, 175(36), 8-15.
Kelly, S., Kaye, S. A., & Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics, 77, 101925.
Khando, K., Islam, M. S., & Gao, S. (2022). The emerging technologies of digital payments and associated challenges: a systematic literature review. Future Internet, 15(1), 21.
Lasaiba, M. A., Lasaiba, D., Arfa, A. M., & Lasaiba, I. (2023). Structural Equation Modeling Partial Least Square for Modeling the Relationship of Readiness, Creativity and Motivation to Students' Problem-Solving Ability. Edunesia: Jurnal Ilmiah Pendidikan, 4(1), 67-79.
Li, Y., Song, Y., Sun, Y., & Zeng, M. (2024). When do employees learn from artificial intelligence? The moderating effects of perceived enjoyment and task-related complexity. Technology in Society, 77, 102518.
Lo, W., Yang, C. M., Zhang, Q., & Li, M. (2024). Increased Productivity and Reduced Waste with Robotic Process Automation and Generative AI-Powered IoE Services. Journal of Web Engineering, 23(1), 53-87.
Low, S., Ullah, F., Shirowzhan, S., Sepasgozar, S. M., & Lin Lee, C. (2020). Smart digital marketing capabilities for sustainable property development: A case of Malaysia. Sustainability, 12(13), 5402.
Massoudi, A., & Fatah, S. (2021). Advancing small and medium-size enterprises' performance by adopting marketing and service innovation. International Journal of Procurement Management, 14(6), 742-758.
Massoudi, A. H., Fatah, S. J., & Jami, M. S. (2024). The Role of Artificial Intelligence Application in Strategic Marketing Decision-making Process. Cihan University-Erbil Journal of Humanities and Social Sciences, 8(1), 34-39.
McLean, G., Osei-Frimpong, K., & Barhorst, J. (2021). Alexa, do voice assistants influence consumer brand engagement? Examining the role of AI powered voice assistants in influencing consumer brand engagement. Journal of Business Research, 124, 312-328.
Mican, D., Sitar-Tăut, D. A., & Moisescu, O. I. (2020). Perceived usefulness: A silver bullet to assure user data availability for online recommendation systems. Decision Support Systems, 139, 113420.
Nather, I. T., Burhanuddin, M. A., Sek, Y. W., & Ali, S. M. (2020). An investigation of crucial factors that influences the adoption of E-Commerce in small and medium enterprises in Iraq. European Journal of Molecular and Clinical Medicine, 7(6), 813-828.
Nikiforovа, L. (2022). Use of innovative information technology in e-commerce and digital economy. Innovation and sustainability. № 1: 65–71.
O’Brien, RM. (2007). A caution regarding rules of thumb for variance inflation factors. Quantity, 41(5), 673–690, https://doi.org/10.1007/s11135-006-9018-6.
Piccialli, F., Di Cola, V. S., Giampaolo, F., & Cuomo, S. (2021). The role of artificial intelligence in fighting the COVID-19 pandemic. Information Systems Frontiers, 23(6), 1467-1497.
Rafique, H., Almagrabi, A. O., Shamim, A., Anwar, F., & Bashir, A. K. (2020). Investigating the acceptance of mobile library applications with an extended technology acceptance model (TAM). Computers & Education, 145, 103732.
Raji, M. A., Olodo, H. B., Oke, T. T., Addy, W. A., Ofodile, O. C., & Oyewole, A. T. (2024). E-commerce and consumer behavior: A review of AI-powered personalization and market trends. GSC Advanced Research and Reviews, 18(3), 066-077.
Sarkar, M., Ayon, E. H., Mia, M. T., Ray, R. K., Chowdhury, M. S., Ghosh, B. P., ... & Puja, A. R. (2023). Optimizing E-Commerce Profits: A Comprehensive Machine Learning Framework for Dynamic Pricing and Predicting Online Purchases. Journal of Computer Science and Technology Studies, 5(4), 186-193.
Sekaran, U., & Bougie, R. (2016). Research methods for business: A skill building approach. john wiley & sons.
Sestino, A., & De Mauro, A. (2022). Leveraging artificial intelligence in business: Implications, applications and methods. Technology Analysis & Strategic Management, 34(1), 16-29.
Sestino, A., Kahlawi, A., & De Mauro, A. (2023). Decoding the Data Economy: A Literature Review of its Impact on Business, Society and Digital Transformation. European Journal of Innovation Management, 1-26. https://doi.org/10.1108/ejim-01-2023-0078
Sohn, K., & Kwon, O. (2020). Technology acceptance theories and factors influencing artificial Intelligence-based intelligent products. Telematics and Informatics, 47, 101324.
Song, X., Yang, S., Huang, Z., & Huang, T. (2019, August). The application of artificial intelligence in electronic commerce. In Journal of Physics: Conference Series, 1302(3), 032030. IOP Publishing.
Ursachi, G., Horodnic, A., & Zait, A. (2015). How reliable are measurement scales? External factors with indirect influence on reliability estimators, Procedia Econ. Finance 20(15), 679–686, https://doi.org/10.1016/s2212-5671(15)00123-9.
Wang, C., Ahmad, S. F., Ayassrah, A. Y. B. A., Awwad, E. M., Irshad, M., Ali, Y. A., ... & Han, H. (2023). An empirical evaluation of technology acceptance model for Artificial Intelligence in E-commerce. Heliyon, 9(8). 1-20.
Xu, Y., Yuan, L., Khalfaoui, R., Radulescu, M., Mallek, S., & Zhao, X. (2023). Making technological innovation greener: Does firm digital transformation work? Technological Forecasting and Social Change, 197, 122928.
Yamini, K. K. (2022). The Consumer Study of Drivers for B2C M-Commerce Adoption in Selected Cities in the State of Gujarat. (Doctoral dissertation, Maharaja Sayajirao University of Baroda (India)).
Zubir, M. H. H., & Abdul Latip, M. S. (2023). Factors affecting citizens’ intention to use e-government services: assessing the mediating effect of perceived usefulness and ease of use. Transforming Government: People, Process and Policy. https://doi.org/10.1108/TG-04-2023-0040
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Aram Massoudi, Muslim N. Zaidan, Azwar Qasim Agha
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.